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Abstract

A new method for the acceleration of linear and nonlinear time dependent calculations is
presented. It is based on the Large Discretization Step (LDS, in short) approximation, de�ned
in this work, which employs an extended system of low accuracy schemes to approximate a
high accuracy discrete approximation to a time dependent di�erential operator. Error bounds
on such approximations are derived. These approximations are e�ciently implemented in
the LDS methods for linear and nonlinear hyperbolic equations, presented here. In these
algorithms the high and low accuracy schemes are interpreted as the same discretization of a
time dependent operator on �ne and coarse grids, respectively. Thus, a system of correction
terms and corresponding equations are derived and solved on the coarse grid to yield the �ne
grid accuracy. These terms are initialized by visiting the �ne grid once in many coarse grid
time steps. The resulting methods are very general, simple to implement and may be used to
accelerate many existing time marching schemes.

The e�ciency of the LDS algorithms is de�ned as the cost of the computing the �ne grid
solution relative to the cost of obtaining the same accuracy with the LDS methods. The LDS
methods typical e�ciency is 16 for 2D problems and 28 for 3D problems for both linear and
nonlinear equations. For a particularly good discretization of a linear equation an e�ciency
of 25 in 2D and 66 in 3D was obtained.
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1 Introduction

In recent years, interest in long-time integration of partial di�erential equations has increased
greatly due to the need to solve diverse problems occurring in various �elds of science and engi-
neering such as uid mechanics, aeroacoustics, electromagnetism and others. In such computations

a large system of equations has to be evaluated (explicit schemes) or solved (implicit schemes)
for many time steps. These simulations require huge computation time and unless more e�-

cient computational methods are developed, they will be practically intractable in the foreseeable
future.

The two possible approaches to employ �nite di�erence approximations to such problems
are either to use a highly accurate scheme (i.e., a high order scheme or a scheme for long-time

integration [10, 13]) on a grid which resolves all the physical frequencies occurring in the problem,
or to use a low order scheme on a signi�cantly �ner grid, or a combination of these two. The

�rst approach seems more appealing theoretically. Indeed, high order spatial discretizations [6,
7, 13] and discretizations for long-time integration [10, 13], as well as high order time marching
schemes [8] have been in the focus of research lately. Although signi�cant progress has been made,

the two main problems investigated in the abovementioned research still lack general solutions.
The appropriate treatment of the boundary terms in high order Runge-Kutta schemes that will

maintain the interior discretization accuracy still requires further investigation even for linear
variable coe�cient equations. This problem is mainly of a theoretical interest as it has only a

minor e�ect on most practical computations [8]. The second problem is the lack of a systematic
method for constructing numerical boundary conditions of a required accuracy such that the

resulting discretization is time-stable. This is a major obstacle to long-time simulations. The
Large Discretization Step (LDS) methods, presented here, o�er a new and interesting approach

to long-time integration. They enable to obtain a �ne grid accuracy by time stepping mainly
on a coarse grid with rare visits to the �ne grid, at a cost substantially smaller than �ne grid
simulation.

In some cases, the huge computational cost of �ne grid simulations may be reduced by using
such a grid only at regions where it is required, e.g., to resolve shocks, and employing coarser grids

in parts of the computational domain where the solution is relatively smooth [1, 2, 3]. This method
of local mesh re�nement for systems of conservation laws has been reported to achieve a speedup

of up to a factor of 55 for three dimensional problems, relative to performing the computation
on a uniform grid with the �nest mesh employed [1]. This approach assumes the scheme has

the same spatial and temporal accuracy and does not seem applicable to implicit schemes. The
programming e�ort involved in generating and moving the �ne grid patches is probably the cause

for the limited use of this method.
Multigrid methods have been employed to accelerate time dependent computations in several

ways. The naive approach is to use an e�cient multigrid solver for implicit time marching schemes.

However, in this approach one is still con�ned to the �ne grid time step. A more advanced idea
is to use multigrid in time, as well. This approach, the frozen � method, was successfully applied

to parabolic equations [4, 5, 9]. There, correction terms are added to the coarse grid equations
such that one can time-step on the coarse grid and practically obtain the �ne grid solution. This

method exploits the smoothness of the change in the solution, typical to parabolic equations,
which can be well approximated on coarser grids.
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The Large Discretization Step (LDS) methods, �rst introduced by the authors in [11], may be

viewed as a generalization of the frozen � method aimed at accelerating the solution of hyperbolic
as well as parabolic equations, for both implicit and explicit time marching schemes. The present
work investigates the LDS approach for hyperbolic equations; a class of equations that was not

previously amenable to multigrid methods. Although the error bounds derived in this work apply
to any time dependent equation, the algorithm for parabolic equations would signi�cantly di�er

from the hyperbolic solver. Nevertheless, it is expected that introducing the ideas outlined in this
work to parabolic solvers will substantially improve their performances, as well.

The present paper extends the preliminary results presented in [11] in several important as-
pects. The algorithm for high degree LDS was signi�cantly improved; resulting in a more e�cient

algorithm that requires lower order intergrid transfers. The method was extended to treat non-
linear problems with the same e�ciency. Last, problems with non-periodic boundary conditions

were solved.
The hyperbolic LDS identi�es two grids, a coarse representation grid on which all wavelengths

occurring in the physical problem can be well resolved, and a �ner computational grid which is

required to obtain the desired accuracy with the given discretization at the prescribed �nal time.
The LDS method employs a grid possibly �ner than the representation grid, yet signi�cantly

coarser than the computational grid. It introduces one or more correction terms to the coarse
grid equations and a system of equations satis�ed by these terms is derived, initialized using

the �ne grid and solved on the coarse grid to yield the �ne grid solution. The correction terms
are integrated on the coarse grid, hence, their accuracy deteriorates at a rate determined by the

coarse grid discretization. However, since their norm is signi�cantly smaller than the solution
norm, they can be e�ectively used for many coarse grid time steps. Thereafter, the �ne grid

should be revisited to compute new initial data for the correction equations.
The LDS method assumes that a grid which resolves all the physical frequencies occurring

in the problem as well as a discretization suitable for a fairly long simulation time are given.

However, the requirement to employ the same discretization for substantially longer integration
time while maintaining a desired accuracy necessitates the use of signi�cantly �ner grids. The

algorithm solves on the coarse grid an extended system of equations, using essentially the original
time marching subroutines (with at most slight modi�cations), yielding the �ne grid solution. This

programming simplicity renders the proposed method easily applicable to any problem similar to
these investigated in this work, provided it obeys a few programming conventions. This is an

important feature of the proposed method.
The e�ciency of the LDS is de�ned as the cost of computing the solution on the �ne grid

relative to the cost of obtaining the same solution with the LDS on the coarse grid. The typical
e�ciency achieved in this work was 16 for 2D problems and 28 for 3D problems. This e�ciency
was obtained for linear problems with periodic and Dirichlet boundary conditions and for the

nonlinear Euler equation in a periodic domain. A particularly good discretization yielded, for a
linear problem, an e�ciency of 25 in 2D and 66 in 3D.

The organization of this paper is as follows. Section 2 contains a heuristic derivation of the
method for both linear and nonlinear time dependent equations. Section 3 presents bounds on

the error in the LDS approximation for linear equations. In Section 4 it is shown that the LDS
approximation maintains the stability and consistency of the original scheme. The LDS algorithms

are described in Section 5. In Section 6 Fourier analysis is employed to analyze various aspects of
the algorithm, in particular, to obtain the necessary orders of the intergrid transfers. Section 6
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presents numerical results and the conclusions are given in Section 7.

2 Heuristic Derivation

An intuitive and informal derivation of the LDS method will be outlined in this section. A rigorous
derivation for linear problems is given in Section 3.

Consider a linear time dependent system of equations with coe�cients possibly dependent on
x but not on t,

ut = L(x;
@

@x
)u for x 2 
 t 2 [0; T ]

Mu = 0 for x 2 @
 (2.1)

u(x; 0) = u0(x) for x 2 


where 
 � IRd, and @
@x

= ( @
@x1

; @
@x2

; . . . ; @
@xd

).

Let Lh; LH be the same semi-discretization of equation (2.1) on grids h and H , respectively.
Assume that the �ne grid is required to obtained the desired accuracy at time T . However, instead

of solving on the �ne grid

Uh
t = LhUh (2.2)

one would like to modify the coarse grid equation such that it will yield the �ne grid solution.
The coarse grid solution satis�es,

UH
t = LHUH (2.3)

A correction term � to equation (2.3) is sought such that,

uht = LHuh + � (2.4)

where uh = IHh U
h denotes a restriction of the �ne grid solution to the coarse grid. The relative

error, uh � UH , satis�es

(uh � UH)t = LH(uh � UH) + � (2.5)

Thus, this error satis�es the same equation as uh. Moreover,

(@t � LH)� = (@t � LH)2uh = �1 (2.6)

If the following relation holds, which is reasonable to assume when LH well approximates Lh,

(@t � LH)2uh � (@t � LH)uh (2:7)

i.e., �1 � � , then �1 may be neglected; otherwise, the same argument implies that �1 satis�es a
similar equation to uh, resulting in a larger system of correcting equations (See Section 3). Thus,

when relation (2.7) holds and � is properly initialized the system of equations

uht = LHuh + � (2.8)

�t = LH�
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yields the �ne grid solution on the coarse grid for some integration time. This method of ex-

panding a system of di�erence equations to obtain a more accurate approximation will be called
an LDS approximation. In particular, an inated system of the type (2.8) will be called an LDS
approximation in Correction Scheme form.

Introducing the new variable vh = uh + � , the system (2.8) can be written as,

uht = LHuh + vh � uh (2.9)

vht = LHvh + vh � uh

This later form might look awkward; however, as will be shown next, this is the form of the LDS

for nonlinear problems. This representation of the LDS will be called Full Approximation Scheme,
following the multigrid naming conventions [4].

In Section 3 rigorous error bounds on such approximations for linear evolution equations are
derived.

For nonlinear problems, only a heuristic derivation is given. Consider the nonlinear evolution

problem,

ut = P (x; u;
@

@x
) for x 2 
 t 2 [0; T ]

M(u) = 0 for x 2 @
 (2.10)

u(x; 0) = u0(x) for x 2 


where 
 � IRd, and @
@x

= ( @
@x1

; @
@x2

; . . . ; @
@xd

).

Let Ph; PH be the same semi-discretization of equation (2.10) on grids h and H , respectively.

A modi�cation of the coarse grid equation is sought that will yield on that grid the �ne grid
solution, i.e., a forcing term is required which will satisfy

uht = PH(uh) + � (2.11)

where uh = IHh Uh denotes a restriction of the �ne grid solution to the coarse grid. In this case

the relative error satis�es,

(uh � UH)t = PH(uh)� PH(UH) + � (2.12)

� PH
u (uh)(uh � UH) + �

where PH
u (uh) is a linearization of PH around uh. Assume that the following relation holds, which

is reasonable if PH well approximates Ph,

(@t � PH
u (uh)) � = (@t � PH

u (uh))2 (uh � UH)� (@t � PH
u (uh)) (uh � UH) (2:13)

then the right hand side of the � equation may be neglected.
It follows, by the same argument as in the linear case, that the system

uht = PH(uh) + � (2.14)

�t = PH
u (uh) �

yields on the coarse grid the �ne grid solution, for some integration time.
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This formulation of the LDS is inconvenient to use as it requires explicit linearization. Intro-

ducing the new variable vh = uh + � results in the following system of equations,

uht = PH(uh) + vh � uh (2.15)

vht = PH(vh) + vh � uh

In this setting, the implementation of the nonlinear LDS necessitates only minor modi�cations to

the original time marching program.

3 Approximation Theorems

The LDS approximation introduced in Section 2 may be better appreciated once the initial con-

ditions for the correction equations are determined, and error bounds on these approximations
are derived. These two issues are the subject of the present section.

First, an error bound is obtained for a semi-discrete approximation in a restricted setting. This

restriction, a commutativity assumption, is introduced merely to maintain a simple and intuitive
presentation. Subsequently, error bounds for semi-discrete and fully discrete approximations are

derived without this superuous assumption.
The analysis will be performed for linear equations with coe�cients which may depend on x

but not on t, of the form,

ut = L(x;
@

@x
) u+ F (x) for x 2 
 t 2 [0; T ]

Mu = 0 for x 2 @
 (3.1)

u(x; 0) = u0(x) for x 2 


where 
 � IRd, and @
@x

= ( @
@x1

; @
@x2

; . . . ; @
@xd

).

3.1 Semi-Discrete Analysis

3.1.1 Motivation

Consider a stable semi-discretization of a linear homogeneous initial boundary value problem of

the form (3.1) given by,
duh

dt
� Lhuh = 0 (3:2)

with initial conditions uh(0) = uh0 .
Let ~Lh be an approximation to Lh, e.g., a coarse grid representation of the �ne grid operator.

De�ne the system

d
dt

0
BBBB@

vh0;m
...

vhm�1;m
vhm;m

1
CCCCA �

0
BBBB@

~Lh I 0 . . .

0 ~Lh I . . .
. . .

~Lh

1
CCCCA

0
BBBB@

vh0;m
...

vhm�1;m
vhm;m

1
CCCCA =

0
BBBB@

0
...

0
0

1
CCCCA (3.3)

with initial data

vhj;m(0) =
�
Lh � ~Lh

�j
uh(0) (3:4)
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Henceforth, an approximation of a system of equations by an enlarged system of the form (3.3)

will be called an LDS approximation of degree m.
Assume that ~Lh and Lh commute. The solution of this system of linear ordinary di�erential

equations is eA
ht(vh0;m(0); . . . ; v

h
m;m(0))

T , where Ah denotes the above system. The matrix Ah has

a block Jordan form; hence, an explicit expression for vh0;m(t) is given by,

vh0;m(t) = e
~Lht

mX
k=0

(Lh � ~Lh)ktk

k!
uh(0) = e

~Lht

 
e(L

h�~Lh)t �
(Lh � ~Lh)m+1 �m+1

(m+ 1)!

!
uh(0)

for some � 2 [0; t].

Assume that ke
~Lhtuh(0)k � Che�

htkuh(0)k, for constants Ch; �h; then

kuh(t)� vh0;m(t)k =
k(Lh � ~Lh)m+1 �m+1 e

~Lhtuh(0)k

(m+ 1)!
�
kLh � ~Lhkm+1tm+1

(m+ 1)!
Che�

htkuh(0)k (3:5)

The bound (3.5) implies that for any �xed �nal time T , limm!1 kuh(T )� vh0;m(T )k = 0, with

convergence rate depending on the magnitude of the relative truncation error, kLh � ~Lhk.
This bound also suggests that when the relative truncation error is small, then there exists a

time T0 such that the error in the approximation of a �xed degree m is small for T < T0. This
observation motivated the LDS algorithm and enables its high e�ciency. In this algorithm Lh

and ~Lh stand for the same discretization on the �ne and coarse grids, respectively. The algorithm
computes initial conditions for the correction equations using the �ne grid, then marches with the
enlarged system on the coarse grid as long as the LDS error relative to the �ne grid solution is of

the same magnitude as the error in the later solution. Then, the �ne grid is revisited to compute
new initial data for these equations. In this manner the �ne grid accuracy can be obtained when

time marching mainly on the coarse grid.
The identity in (3.5) can be used to obtain the following inequality,

kuh(t)� vh0;m(t)k �
ke

~Lhtk k(Lh � ~Lh)m+1uh(0)k tm+1

(m+ 1)!
(3.6)

The stability of the semi-discretizations considered implies that there exists a mesh size h0 and
constants C; � such that for all grids with mesh size h � h0,

keL
htuh(0)k � C e�tkuh(0)k (3:7)

Therefore, for h � h0 the inequality (3.6) implies that,

kuh(t)� vh0;m(t)k �
k(Lh � ~Lh)m+1uh(0)ktm+1

(m+ 1)!
Ce�t (3:8)

Hence, for a �xed degree m and �xed integration time T , the error in the LDS approximation

satis�es, kuh(t) � vh0;m(t)k = O(h(m+1)p), provided (Lh � ~Lh) = O(hp). Furthermore, if p > 0,

which is reasonable to assume, this bound suggests that the LDS error decreases as h(m+1)p as

mesh is re�ned.
In the next section, an error bound is proved for non homogeneous equations without the

commutativity assumption
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3.1.2 Error Bound

Let Lh be a discretization of the spatial operator L in (3.1). Let Ah be an approximation to Lh,
and denote Bh = Lh � Ah. Intuitively, Lh may be viewed as a �ne grid discretization and Ah

a coarse grid approximation to Lh. However, it should be noted that all the operators Lh; Ah; Bh

are de�ned on the same grid. The semi-discretization of equation (3.1) may be written as

uht �Ahuh = Bhuh + fh

uh(0) = uh0
(3.9)

Denote the solution of this problem by Uh(t) 2 RN ,where N is the number of grid points.
Assume the following inequalities hold,

keA
htk � e�t (3.10)

kUh(t)k � C e�t
�
kuh0k+ kf

hk
�

(3.11)

for constants C; � which may depend on h. The stability of the semi-discretizations considered

implies that for �ne enough grids (3.10){(3.11) may be bounded independently of h.
De�ne the system of equations

d
dt

0
BBBB@

V h
0;m
...

V h
m�1;m

V h
m;m

1
CCCCA�

0
BBBB@

Ah I 0 . . .
0 Ah I . . .

. . .

Ah

1
CCCCA

0
BBBB@

V h
0;m
...

V h
m�1;m

V h
m;m

1
CCCCA =

0
BBBB@

fh0
...

fhm�1
fhm

1
CCCCA (3.12)

0
BBBB@

V h
0;m(0)
...

V h
m�1;m(0)

V h
m;m(0)

1
CCCCA =

0
BBBB@

Bh
0U

h
0

...

Bh
m�1U

h
0

Bh
mU

h
0

1
CCCCA (3.13)

fhj = Bh
j f

h 0 � j � m (3.14)

with the Bh
j de�ned inductively by

Bh
0 = I

Bh
j+1 = [Bh

j ; A
h] +Bh

j B
h j � 0

(3.15)

It will be shown that the �rst component of the solution of this system, V h
0;m(t), approximates

Uh(t). More precisely, a bound on kV h
0;m(t)�Uh(t)k will be presented which, for �xed t, tends to

zero as m! 1.

The vector (Bh
0U

h(t); . . . ; Bh
mU

h(t)) satis�es the equation

d
dt

0
BBBB@

Bh
0U

h

...

Bh
m�1U

h

Bh
mU

h

1
CCCCA�

0
BBBB@

Ah I 0 . . .

0 Ah I . . .
. . .

Ah

1
CCCCA

0
BBBB@

Bh
0U

h

...

Bh
m�1U

h

Bh
mU

h

1
CCCCA =

0
BBBB@

fh0
...

fhm�1
fhm + Bh

m+1U
h

1
CCCCA (3.16)
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0
BBBB@

Bh
0U

h(0)
...

Bh
m�1U

h(0)
Bh
mU

h(0)

1
CCCCA =

0
BBBB@

Bh
0U

h
0

...

Bh
m�1U

h
0

Bh
mU

h
0

1
CCCCA (3.17)

It will be shown that V h
j;m(t) converges to B

h
j U

h(t) asm!1. In particular, V h
0;m(t) converges

to Uh(t) as m!1.

De�ne ehj;m(t) = Bh
j U

h(t)� V h
j;m(t). It satis�es the following equation

d
dt

0
BBBB@

eh0;m
...

ehm�1;m
ehm;m

1
CCCCA �

0
BBBB@

Ah I 0 . . .

0 Ah I . . .
. . .

Ah

1
CCCCA

0
BBBB@

eh0;m
...

ehm�1;m
ehm;m

1
CCCCA =

0
BBBB@

0
...
0

Bh
m+1U

h

1
CCCCA (3.18)

0
BBBB@

eh0;m(0)
...

ehm�1;m(0)

ehm;m(0)

1
CCCCA =

0
BBBB@

0
...

0
0

1
CCCCA (3.19)

The solution of this system satis�es

ehm;m(t) =

Z t

0
eA

h(t�s)Bh
m+1U

h(s)ds (3.20)

ehj;m(t) =

Z t

0
eA

h(t�s)ehj+1;m(s)ds 0 � j � m� 1 (3.21)

The norm keh0;m(t)k is the sought error bound.

kehm;m(t)k � kBh
m+1k

Z t

0
e�(t�s)kUh(s)kds � kBh

m+1k
�
kuh0k+ kf

hk
�
C te�t (3.22)

By induction one obtains

kehl;m(t)k � kBh
m+1k

�
kuh0k+ kf

hk
�
C

tm�l+1

(m� l+ 1)!
e�t (3.23)

The following theorem was proved.
Theorem 1 Let Uh(t) be the solution of (3.9) and (V h

0;m(t); . . . ; V
h
m;m(t)) be that of (3.12)-

(3.13) Then

kV h
0;m(t)� Uh(t)k � kBm+1k

�
kuh0k+ kf

hk
�
C

tm+1

(m+ 1)!
e�t (3.24)
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A di�erent bound on the error in the LDS approximation will be derived next. Denote

	h(t) = sup
0�s�t

e�s (3.25)

�h
m+1(t) = sup

0�s�t
kBh

m+1U
h(s)k (3.26)

The exponent � may depend on the mesh size h. However, for a grid �ne enough the stability of
the semi-discretization implies that the solution can be bounded independently of h. Therefore,

it will be assumed that the grid is �ne enough for this property to hold. Then,

kehm;m(t)k � 	h(t)�h
m+1(t) t (3:27)

and

kehj;m(t)k �
h
	h(t)

im�j+1
�h
m+1(t)

tm�j+1

(m� j + 1)!
(3:28)

Therefore,

keh0;m(t)k �
h
	h(t)

im+1
�h
m+1(t)

tm+1

(m+ 1)!
(3:29)

This bound is very crude and can be easily improved. However, it implies that for a �xed �nal

time T and degree m, if Bm+1 = O(hpm+1) with pm+1 > 0, then �h
m+1(T ) = O(hpm+1) and the

error in the LDS approximation decreases like hpm+1 as mesh is re�ned.

The bound (3.29), suggests that looking at Bh
m+1 may give an insight into the accuracy of the

approximation. From the de�nition of Bh
j , it follows that B

h
1 = Bh and Bh

2 = [Bh; Ah] + (Bh)2.

In the following two examples, Ah is interpreted as a coarse grid approximation to the �ne
grid spatial discretization Ah +Bh.

Example 1 Consider a discretization of the two dimensional wave equation

utt = �u (3:30)

when transformed into the system 
u

v

!
t

=

 
0 I

� 0

! 
u

v

!
(3.31)

This discretization of the wave equation was successfully used in [12] to solve problems in elasticity.
Assume that the Laplace operator is approximated by a second order scheme. Then, up to higher
order terms,

Ah =

 
0 I

�+ �H2(@xxxx + @yyyy ) 0

!
; Bh =

 
0 0

� (h2 �H2)(@xxxx + @yyyy ) 0

!
(3.32)

where � denotes a generic constant. Since B2 = 0, it follows that

Bh
2 = [Bh; Ah] =

 
�� (h2 �H2) (@xxxx+ @yyyy) � (h2 �H2) (@xxxx + @yyyy )

0 0

!
(3.33)

It can be seen that Bh
2 consists the same terms as the relative truncation error. Thus, one can not

expect that the LDS of degree one will yield an approximation more accurate than the coarse grid
discretization. Indeed, applying the LDS algorithm to this discretization shows that the error in

the LDS of degree one solution grows like the coarse grid error.
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Example 2 Consider the linearized Euler equation

pt = a � r+ c (ux + vy)

ut = a � r+ c px (3.34)

vt = a � r+ c py

where a = (a1; a2) is a two dimensional vector. Assume, that the spatial operator is discretized
using a second order scheme. Then, up to higher order terms,

Ah =

0
B@ a � (r+ �H2 (@xxx + @yyy)) c (@x + �H2 @xxx) c (@y + �H2 @yyy)

c (@x + �H2 @xxx) a � (r+ �H2 (@xxx + @yyy)) 0

c (@y + �H2 @yyy) 0 a � (r+ �H2 (@xxx + @yyy))

1
CA

Bh = (h2 �H2)

0
B@ a � (�@xxx + � @yyy) c �@xxx c �@yyy

c �@xxx a � (� @xxx + � @yyy) 0
c �@yyy 0 a � (� @xxx + � @yyy)

1
CA (3.35)

where � is a generic constant. It can be easily seen that (Bh)2 consists of sixth order mixed

derivatives and fourth order powers of H; h.

[Bh; Ah] =

0
B@ 0 0 0

0 0 �

0 �� 0

1
CA (3.36)

with
� = c2 �2 (h2 �H2)2(@yyyx � @xyyy + @yyyxxx � @xxxyyy) (3:37)

For smooth solutions,

� = c2 �2 (h2 �H2)2(@yyyx � @xyyy) (3:38)

Hence, the error bound (3.29) implies that for smooth data the LDS of degree one yields

a signi�cantly smaller error than the coarse grid operator. Indeed, our numerical results (see
Section 7) show that the LDS algorithm for this equation yields the �ne grid solution on the

coarse grid.

3.2 Fully Discrete Analysis

Consider a stable �nite di�erence approximation to (3.1) of the form

Un+1 = (I + kA)Un + kBUn + kf

U0 = u0
(3.39)

where k = �t.

Assume that

kUnk < e�nk (ku0k+ kfk) (3.40)

kI + kAk � e�k (3.41)
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In an analogous way to the semi-discrete case, de�ne (V n
0;m; . . . ; V

n
m;m) to be the solution of

0
BBBB@

V n+1
0;m
...

V n+1
m�1;m

V n+1
m;m

1
CCCCA �

0
BBBB@

I + kA kI 0 . . .

0 I + kA kI . . .
. . .

I + kA

1
CCCCA

0
BBBB@

V n
0;m
...

V n
m�1;m

V n
m;m

1
CCCCA =

0
BBBB@

k f0
...

k fm�1
k fm

1
CCCCA (3.42)

0
BBBB@

V 0
0;m
...

V 0
m�1;m

V 0
m;m

1
CCCCA =

0
BBBB@

B0u0
...

Bm�1u0
Bmu0

1
CCCCA (3.43)

fj = Bjf 0 � j � m (3.44)

with Bj de�ned recursively by

B0 = I (3.45)

Bj+1 = [Bj ; A] +BjB j � 0 (3.46)

Consider the vector (B0U
n; . . . ; Bm�1U

n; BmU
n). It satis�es

0
BBBB@

B0U
n+1

...
Bm�1U

n+1

BmU
n+1

1
CCCCA�

0
BBBB@

I + kA kI 0 . . .
0 I + kA kI . . .

. . .

I + kA

1
CCCCA

0
BBBB@

B0U
n

...
Bm�1U

n

BmU
n

1
CCCCA =

0
BBBB@

k f0
...

k fm�1
k fm + k Bm+1U

n)

1
CCCCA(3.47)

with the same initial condition as (V n
0;m; . . . ; V

n
m;m).

The error enj;m = BjU
n � V n

j;m satis�es

0
BBBB@

en+1
0;m
...

en+1
m�1;m

en+1
m;m

1
CCCCA �

0
BBBB@

I + kA kI 0 . . .

0 I + kA kI . . .
. . .

I + kA

1
CCCCA

0
BBBB@

en0;m
...

enm�1;m
enm;m

1
CCCCA =

0
BBBB@

0
...
0

k Bm+1U
n

1
CCCCA (3.48)

0
BBBB@

e00;m
...

e0m�1;m
e0m;m

1
CCCCA =

0
BBBB@

0
...
0
0

1
CCCCA (3.49)
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These equations give,

1enm;m =
n�1X
j=0

(I + kA)n�1�j k Bm+1U
j (3.50)

enl;m =
n�1X
j=0

(I + kA)n�1�j k ejl+1;m 0 � l � m� 1 (3.51)

The following theorem can be proved by bounding the solution of this discrete system.
Theorem 2 Let Un be the solution of (3.39) and (V0;m(t); . . . ; Vm;m(t)) be that of (3.42){

(3.43). Then

kV n
0;m � Unk �

�
kU0k+ kfk

�
kBm+1k

 
n

m+ 1

!
km+1e�(n�m�1) k (3.52)

Proof : The following, more general, formula will be proved

kenl;mk �
�
kU0k+ kfk

�
kBm+1k

 
n

m� l+ 1

!
km�l+1e�(n�m+l�1) k for 0 � l � m (3:53)

Theorem 2 is the particular case of l = 0.

The proof follows by induction on m � l. First consider the case m � l = 0, i.e., l = m.
According to formula (3.50)

enm;m =
n�1X
j=0

(I + kA)n�1�j k Bm+1U
j (3:54)

Therefore,

kenm;mk �
n�1X
j=0

k(I + kA)n�1�jk k kBm+1k kU
jk �

n�1X
j=0

e�(n�1�j)k k kBm+1k e
�j k

�
kU0k+ kfk

�

=
�
kU0k+ kfk

�
kBm+1k (nk) e

�(n�1)k (3.55)

Assume the bound (3.53) is correct for m� l = m� 1; that is,

ken1;mk �
�
kU0k+ kfk

�
kBm+1k

 
n

m

!
kme�(n�m) k (3:56)

From relation (3.53) it follows that,

en0;m =
n�1X
j=0

(I + kA)n�1�j k ej1;m (3.57)

Therefore, by the induction hypothesis (3.56),

ken0;mk �
n�1X
j=0

k(I + kA)n�1�jk k
�
kU0k+ kfk

�
kBm+1k

 
j

m

!
km e�(j�m) k (3.58)

�
�
kU0k+ kfk

�
kBm+1k

 
n

m+ 1

!
km+1 e�(n�m�1) k (3.59)
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The last inequality follows from the following identity which can be proved by induction on n.

n�1X
j=0

 
j

m

!
=

 
n

m+ 1

!
(3.60)

The relations (3.50){(3.51) give rise to a somewhat di�erent bound, as well. Denote,

	h(n) = sup
0�j�n

k(I + kA)jk (3.61)

�h
m+1(n) = sup

0�j�n
kBh

m+1U
jk (3.62)

Then,

kenm;mk � (nk)	h(n)�h
m+1(n) (3:63)

and

ken0;mk � (nk)m+1
h
	h(n)

im+1
�h
m+1(n) (3:64)

The stability of the discretization implies that for a �xed time T , if the meshsize is �ne enough,

i.e., h � h0, (assuming that k is related to h in a �xed manner), then one can bound

	h(n) � C(T ) for all nk � T; such that h � h0 (3:65)

this bound is independent of the mesh size. Thus,

ken0;mk � Tm+1 [C(T )]m+1 �h
m+1(n) (3:66)

If Bm+1 = O(hpm+1), then as mesh is re�ned the error in the LDS approximation decreases like

hpm+1 .
At �rst glance the discretization (3.39) is a �rst order in time explicit scheme. However, any

single stage explicit or implicit discretization of any order can be brought to a similar form once the

source term is appropriately rede�ned. Therefore, Theorem 2 can be modi�ed and generalized
to yield a similar result for a general discretization. Such a generalization would be futile as

�nding an explicit form for A, B and Bm might require matrix inversion or computing a matrix
polynomial. Thus, in those cases the bound (3.52) is hard to compute.

In the fully discrete setting, as in the semi-discrete, an inspection of Bm+1 might indicate
about the applicability of the LDS method for a given discretization.

4 Stability, consistency and convergence

In the previous section a method for obtaining highly accurate approximations using an expanded
system of lower order approximations was analyzed. It should be proved that if the original scheme

was consistent and stable then so is the resulting LDS scheme.
For simplicity of presentation the discussion is limited to LDS of degree one. The generalization

to LDS of general degree m is straightforward. It is further assumed that the source term F = 0.
This assumption does not e�ect stability analysis [14] and its e�ect on consistency will be shortly

discussed.
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In an LDS of degree one instead of using the stable and consistent scheme,

Un+1 = (I + kA)Un (4.1)

U0 = u0 (4.2)

the following LDS system is employed,

V n+1
0;1 = (I + kA)V n

0;1 + kV n
1;1 (4.3)

V n+1
1;1 = (I + kA)V n

1;1 (4.4)

V 0
0;1 = u0 (4.5)

V 0
1;1 = B1u0 (4.6)

where B1 = B is de�ned in (3.39).

The stability of the scheme (4.3)-(4.4) follows from the structure of this system. It consists of
a principal part which is coupled through lower order terms. The principal part is diagonal; thus,

its discretization is stable for the same time step as the original scheme. The lower order term
does not a�ect stability.

The consistency of the single equation discretization implies that the LDS is a consistent
approximation of the system

ut = Lu+ � (4.7)

�t = L�

for initial data

u(x; 0) = u0(x) (4.8)

�(x; 0) = �0(x)

In the LDS approximation V 0
1;1 = B1u0. Thus, if the following relation holds

B1 = O(hp1 + kq1) with p1; q1 � 1 (4:9)

then the LDS solution is a consistent approximation of (4.7)-(4.8) with initial data

u(x; 0) = u0(x) (4.10)

�(x; 0) = 0

Thus, it consistently approximates the equation

ut = Lu (4.11)

u(x; 0) = u0(x)

The source term for the V1;1 equation is B1 F . Thus, by the above reasoning, if (4.9) holds then

the � equation is a consistent approximation of an equation with F = 0. Therefore, this term
does not e�ect consistency, either.

It follows, by Lax equivalence theorem [14], that the consistency and stability of the origi-
nal equation together with condition (4.9) ensure the LDS solution convergence to the analytic

solution.
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The LDS approximation maintains the stability of the original scheme, however, it does not

necessarily preserve the time-stability of the discretization, i.e., the LDS solution might exhibit a
non-physical growth in time although the underlying discretization did not allow such a growth.
This phenomena is demonstrated in Lemma 1. Recall, if Ah is a discrete operator acting on

grid functions on a periodic or in�nite domain, then the symbol of Ah, Âh(�), is de�ned by the
identity,

Âh(�)ei��x = Ahei��x (4:12)

Lemma 1: Let Ah be a space discretization of a scalar time-dependent equation with periodic

boundary conditions, such that its symbol satis�es Âh(�0) = 0, for �0 6= 0 and B̂h(�0) 6= 0. Then
the error in the LDS system based on Ah grows polynomially in time for this Fourier component.

The order of the polynomial equals the LDS degree.

Proof: Consider a semi-discrete LDS approximation of degree one based on Ah. According

to Section 3.1.1 it has the form,

uht = Ah uh + �h (4.13)

�ht = Ah �h

with initial data

uh(x; 0) = uh0(x) (4.14)

�h(x; 0) = Bhuh0(x)

The solution of this system for the �0 component is,

ûh(�0; t) = eÂ
h(�0)t

�
ûh0(�0) + tB̂h(�0)û

h(�0)
�
=
�
1 + t B̂h(�0)

�
ûh(�0) (4.15)

The proof for higher degree LDS is similar.

Note, that the property Âh(�0) = 0 is common to central discretizations of the �rst derivative
on non-staggered grids, for �0 = � (see also Sec. 6.3).

It should be emphasized that although the LDS transformation preserves stability, the resulting

algorithm might not be stable. Consider, for instance, a discretization satisfying the condition of
Lemma 1; then the LDS solution for the �0 component will grow exponentially with the number

of visits to the �ne grid. Other possible sources for such a growth are large errors introduced
by the intergrid transfer employed by the algorithm which are not damped during the cycle (see

Sec. 5.1.4) or improper use of Richardson extrapolation (see Sec. 5.2). These last remarks can be
understood once the LDS algorithm is presented, in the next section.

5 Large Discretization Step (LDS) Methods

The LDS approximation, introduced in the previous sections, approximates a high accuracy
scheme by an enlarged system of equations of a lower accuracy discretization. In the present

work the two schemes are the same discretization of a di�erential operator on two di�erent grids.
An LDS algorithm computes the �ne grid solution on the coarse grid by solving there an extended

system of equations which are initialized using the �ne grid. The LDS system is integrated on
the coarse grid; hence, the accuracy of the correction terms deteriorates at a rate determined by
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that grid discretization. However, since the norm of these terms is signi�cantly smaller than the

solution norm, they can be e�ectively used for many coarse grid time steps. Then, the �ne grid
has to be revisited to compute new initial data for the correction terms. These terms initialization
is computationally costly and the LDS approximation consists of more equations than the original

problem; however, the large number of steps performed on the coarse grid before revisiting renders
the resulting algorithm very e�cient.

This section details the algorithmic implementation of these ideas. The algorithm is presented
both in its Correction Scheme and Full Approximation Scheme forms and e�cient initialization

procedures for these schemes are described and analyzed. Richardson extrapolation is introduced
to the LDS method which, for smooth solutions, yields a higher order approximation. The e�-

ciency of the algorithm is discussed and evaluated.
Given a system of hyperbolic di�erential equations with coe�cients which may depend on x

but not on t, of the form

@U(x; t)

@t
� A(x;

@

@x
)U(x; t) = F (x) for x 2 
; t 2 [0; T ]

Mu(x; t) = 0 for x 2 @
 (5.1)

U(x; 0) = U0(x) for x 2 


where 
 � IRd, and @
@x

= ( @
@x1

; @
@x2

; . . . ; @
@xd

).
Consider a discretization of the form

Un+1 = E(x; k; h)Un+ S(x; k; h)Fn (5.2)

where h; k denotes �x and �t, respectively, and Un = Un
j approximates U(jh; nk). In this work

E(x; k; h) is an explicit or implicit two level time marching operator. However, the method may

be used with multilevel integration schemes, as well. In the sequel, the notation Ek;h will be used,
omitting the possible dependence on x. In an LDS application two grids (in space-time) are given,
a �ne one with spacing (h; k) and a coarse with (H;K), where H = �h;K = �k. Given UH(x; 0)

on the (H;K) grid, one needs to calculate the solution up to a prescribed �nal time T and obtain
the �ne grid accuracy.

5.1 The LDS Method of General Degree

The degree of an LDS approximation is de�ned as the number of its correction terms. The
error bounds obtained in Section 3 suggest that in many cases (e.g., for smooth solutions) the

higher the degree the better the LDS approximates the �ne grid solution. In practice, e�ciency
considerations limit the degree to at most two (see Section 5.3.2). In the sequel, algorithms for

LDS of general degree are described.
The initialization procedures necessitate the transfer of the solution from the coarse grid to

the �ne and back. In this section, it is assumed that appropriate intergrid transfers are given.
The order and properties of these transfers will be discussed in Section 6.1. For presentation

simplicity the algorithm is described for the case F (x) = 0; the treatment of a source term is
straightforward.
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5.1.1 Correction Scheme LDS

The fundamental idea of the LDS method is to look for correction terms to the coarse grid
equations, derive and solve the equations satis�ed by these terms to obtain the �ne grid accuracy

on the coarse grid. In Section 3, it was shown that for linear problems these terms approximately
satisfy the same equation as the solution. The resulting system of equations, which is valid only

for linear problems, was named Correction Scheme LDS.

Correction Scheme LDS of Degree One when H = 2 h. For clarity of presentation, the
algorithm is �rst presented its simplest form, i.e., Correction Scheme LDS of degree one with
H
h
= K

k
= 2.

The algorithm consists two stages : initialization of the correction terms using the �ne grid,

and time marching on the coarse grid for a predetermined number of steps. The results in Section 3
show that for linear problems the correction terms satisfy approximately the same equation as the

solution. However, they do no indicate how to e�ectively and e�ciently compute initial values for
these terms. The requirement that the LDS solution should yield the �ne grid solution suggests
that on the �rst time steps these solutions should be identical. This observation leads to the

following initialization routine,

Initialize(V N
0;1; V

N
1;1)

Set UN = Ih;k
H;K

V N
0;1

Solve UN+m
2 = Eh;k UN+m�1

2 , m=1,2eV N+1
0;1 = EH;K V N

0;1

Set V N+1
1;1 = IH;K

h;k
UN+1 � eV N+1

0;1

V N+1
0;1 = eV N+1

0;1 + V N+1
1;1

Set N = N + 1

The initialization consists of interpolating the LDS solution to the �ne grid and stepping for
the same time on the �ne and coarse grids. Then, the correction term is set to the discrepancy

between the two solutions and the LDS solution is updated to the �ne grid. Here, eV N+1
0;1 stands

for an intermediate value assigned to this variable.

The time advance of the LDS has the following simple form,

LDS Method of Degree One, Correction Scheme

Initialize V 0
0;1

N = 0

While N � d T
K
e Do

Call Initialize(V N
0;1; V

N
1;1)

For i =1,. . .,Revisit Do

Solve V N+1
1;1 = EH;K V N

1;1
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V N+1
0;1 = EH;K V N

0;1 + V N+1
1;1

Set N = N + 1

End

End

The relation between the theory derived in Section 3 and the initialization procedure is ana-
lyzed in Section 5.1.2.

Correction Scheme LDS of General Degree when H = 2 h. The correction term in the
LDS of degree one is initialized to equalize the �ne and LDS solutions. If one could solve the

exact equation satis�ed by this term, which is approximately the �ne grid equation, then the �ne
grid and the LDS solutions would be identical. Clearly, this would be as di�cult as obtaining

the �ne grid solution on the coarse grid. Instead, one can add a new term to correct the �rst
correction term equation. Thus, in an LDS of general degree, the ith correction term may be

viewed as correcting the (i� 1)th term.
The general degree algorithm consists of two stages : initialization of the correction terms

and time marching on the coarse grid for a predetermined number of steps. The time marching

procedure has the following simple form, where term i corrects term i� 1 for 1 � i � d.

LDS Method of General Degree - d , Correction Scheme

Initialize V 0
0;d

N = 0

While N � d T
K
e Do

Call Initialize(V N
0;d; . . . ; V

N
d;d,d )

For i = 1,. . .,Revisit Do

Solve V N+1
d;d = EH;K V N

d;d

For l = d-1,. . .,0, Step = -1, Do

Solve V N+1
l;d = EH;K V N

l;d + V N+1
l+1;d

End

Set N = N + 1

End

End

In an LDS of degree d, the ith correction term (1 � i � d) corrects the (i� 1)th term and both

satisfy approximately the same equation as the coarse grid solution. Therefore, the initialization
of the ith term to correct the (i � 1)th term is identical to the initialization of the �rst term to

correct the solution in the LDS of degree one. Once Vi;d is initialized and Vi�1;d is updated using
this value; the lower index variables can be time advanced using these new values. This procedure

is repeated for all 1 � i � d. Section 5.1.2 outlines the connection between the error bound
derived in Section 3.1.1 and these intuitive arguments which are implemented in the procedure

listed below.

Initialize(V N
0;d; . . . ; V

N
d;d,d )
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For i = 1,. . .,d Do

Set UN = Ih;k
H;K

V N
i�1;d

Solve UN+m
2 = Eh;k UN+m�1

2 , m=1,2eV N+1
i�1;d = EH;K V N

i�1;d

Set V N+1
i;d = IH;K

h;k
UN+1 � eV N+1

i�1;d

V N+1
i�1;d = eV N+1

i�1;d + V N+1
i;d

For l = i-2,. . .,0, Step = -1, Do

Solve V N+1
l;d = EH;K V N

l;d + V N+1
l+1;d

End

Set N = N + 1

End

The initialization of an LDS of degree two is graphically illustrated in Figure 1.
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Figure 1: Initialization of an LDS of degree two. With the notation : uH = V0;2, �
H = V1;2,

'H = V2;2
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Correction Scheme LDS of General Degree when H = �h. The above described proce-

dure can be easily adapted for the general case when H
h
= �. The simplest approach is to perform

� time steps on the �ne grid for each coarse grid time step and initialize the correction terms
correspondingly, see Figure 2. This procedure of direct initialization is very costly and greatly

4h

h

Ih
4h
u4h
0

I4h
h
�hIh

4h
�4h
1

I4h
h
uh

Figure 2: Direct Initialization

reduces the LDS e�ciency.
In case � is a composite number, e.g., � = 2l, a more e�cient approach is available, exploit-

ing the LDS high accuracy by employing intermediate grids. In this approach,the simultaneous
initialization, the �ne grid is used to initialize an LDS system of degree one on the grid H1 = 2 h;

since this approximation is very accurate it can be used to initialize an LDS of degree one on grid
H2 = 2H1. This procedure is repeated until the correction term on grid Hl = H is initialized.

This process is repeatedly employed for all correction terms. In this method, a correction term
on a coarse grid is initialized as soon as enough time marching on �ner grids was performed, see
Figure 3.

A few important points should be emphasized regarding the initialization procedures. First,
in this work the computationally e�cient method was favored. There is, however, a trade o�

between the computational cost and the storage requirements of these two methods (see Sec. 5.3).
Therefore, whenever storage is limited, direct initialization might be preferred. Second, it might

have been expected that direct initialization will yield more accurate solutions than the simulta-
neous approach. However, our numerical results show that these methods are indistinguishable

for integrations times of interest, i.e., as long as the error in the LDS solution is small. Last,
the direct initialization is of practical interest, being used with Richardson extrapolation (see

Sec. 5.2).
A simple way to predict the LDS performance is to look at the relative magnitude of the

correction terms immediately after initialization. According to the result presented in Section 2,

20



4h

2h

h

I
h
2hu

2h
0

I
2h
4hu

4h
0

I
2h
h u

h
I
h
2h�

2h
I
2h
h �

h

I
4h
2h�

2h
I
4h
2hu

2h
I
2h
4h�

4h
1

Figure 3: Simultaneous Initialization

the ratio
k�j(x;0)k
k�j�1(x;0)k

should be roughly constant. Thus, a large variation in this quantity suggests

a large error in the initialization of �j , causing the LDS failure.

The error bounds derived in Section 3 apply to approximations of general degreem. In practice
however, due to e�ciency considerations two is the highest degree used (see Sec. 5.3.2).

5.1.2 Initialization Analysis

The procedure for the correction terms initialization was justi�ed by the intuitive arguments that
when properly initialized, the LDS solution should agree with the �ne grid solution for the �rst

time steps; and that in an approximation of degree d the ith term Vi;d corrects the (i � 1)th

term Vi�1;d (for 1 � i � d). Thus, each term is initialized similarly to the manner the �rst

term is set to correct the solution. This section outlines the relation between the error bound
derived in Section 3.1.1 for the semi-discrete case with the commutativity assumption and the way

initialization is implemented. Speci�cally, it will be shown that the solution at the termination of
the initialization procedure described in Section 5.1.1 and the solution of the LDS approximation

introduced in Section 3.1.1 are equal, up to higher order terms and multiplicative constants which
are used for computational e�ciency.

For simplicity, the analysis is performed for the case H
h

= 2. It is assumed that the �ne
and coarse grid spatial discretizations commute, i.e., [LH ; Lh] = 0; and that intergrid transfers
introduce no error. By an abuse of notation these transfers are omitted from the analysis in this

section. Nevertheless, whenever the �ne and coarse grid solutions appear in the same formula, it
should be understood that an appropriate restriction of the �ne grid solution to the coarse grid
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is implied. Similarly, whenever the �ne and coarse grid operators appear in the same formula

it stands for a restriction of the �ne grid operator to the coarse grid. The properties of these
transfers necessary to guarantee the algorithm performance are discussed in Section 6.1.

In Section 3.1.1 an error bound was derived for a semi-discrete LDS approximation of general

degree d. This approximation which is given by equations (3.3){(3.4) can be succinctly written
as,

dvi;d

dt
= LHvi;d + vi+1;d for i � 0 < d (5.3)

dvd;d

dt
= LHvd;d

with initial conditions

vi;d(x; 0) =
�
Lh � LH

�i
u0(x) (5.4)

where u0(x) is evaluated at grid points. The solution of this system is given by,

vi;d(x; t) =

"
d�iX
k=0

�
Lh � LH

�k+i tk
k!

#
eL

H tu0(x) for 0 � i � d (5:5)

For an LDS algorithm of degree one denote by u
LDS

; � the variables approximating v0;1; v1;1,

respectively. At time �t the solution of the LDS approximation is given by,

v0;1(x;�t) =
h
1 + �t

�
Lh � LH

�i
eL

H�tu0(x) (5.6)

v1;1(x;�t) = eL
H�t

�
Lh � LH

�
u0(x)

For linear problems, the time marching operator EH approximates eL
H�t. Therefore, in the fol-

lowing semi-discrete analysis eL
H�t will denote the time-stepping on gridH for time �t. Assuming

u(x;�t) = O(1), then, at the end of the initialization phase the variables u
LDS

; � satisfy

u
LDS

(x;�t) = eL
h�tu0(x) =

"
1 + �t

�
Lh � LH

�
+
(�t)2

2

�
Lh � LH

�2#
eL

H�tu0(x) + h.o.t

= v0;1(x;�t) + O

�
(�t)2

�
Lh � LH

�2�
(5.7)

�(x;�t) =
�
eL

h�t � eL
H�t

�
u0(x)

= �t

��
Lh � LH

�
+

�t

2

�
Lh � LH

�2�
eL

H�tu0(x) + h.o.t

= �t

�
v1;1(x;�t) + O

�
�t
�
Lh � LH

�2��
(5.8)

The factor �t is maintained to reduce the number of multiplications during the time-stepping

stage. It can be seen that, up to higher order expressions, the algorithm correctly initializes the
�rst correction term.
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For an LDS algorithm of degree two denote by u
LDS

; �; ' the variables approximating v0;2; v1;2
and v2;2, respectively. At time 2�t the solution of the LDS approximation is given by,

v0;2(x; 2�t) =

�
1 + 2�t

�
Lh � LH

�
+ 2(�t)2

�
Lh � LH

�2�
eL

H2�tu0(x)

v1;2(x; 2�t) =
h
1 + 2�t

�
Lh � LH

�i
eL

H2�t
�
Lh � LH

�
u0(x) (5.9)

v2;2(x; 2�t) = eL
H2�t

�
Lh � LH

�2
u0(x)

It can be easily seen that at the end of the initialization procedure the variables u
LDS

; �; ' satisfy,

u
LDS

(x; 2�t) = eL
h2�tu0(x) = v0;2(x; 2�t) + O

�
(�t)3

�
Lh � LH

�3�
(5.10)

�(x; 2�t) = eL
h�t

�
eL

h�t � eL
H�t

�
u0(x) =

h
e(L

h�LH)2�t � e(L
h�LH)�t

i
eL

H2�tu0(x)

= �t

��
Lh � LH

�
+
3�t

2

�
Lh � LH

�2�
eL

H2�tu0(x) + h.o.t

= �t

�
v1;2(x; 2�t) +O

�
�t
�
Lh � LH

�2��
(5.11)

'(x; 2�t) =
�
eL

h�t � eL
H�t

�2
u0(x)

= (�t)2
��

Lh � LH
�2

+�t
�
Lh � LH

�2 �
Lh + LH

��
eL

H2�tu0(x) + h.o.t.

= (�t)2
�
v2;2(x; 2�t) +O

�
�t
�
Lh � LH

�3��
(5.12)

It can be seen the algorithm correctly initializes the correction terms in the LDS of degree two,

up to higher order terms and multiplicative constants.

5.1.3 Full Approximation Scheme LDS

The FAS form of the LDS is appropriate for both linear and nonlinear problems. However, since
the Correction Scheme has a simpler form and necessitates less modi�cations to the code, it is
more conveniently used for linear problems.

In the present work only LDS in FAS form of degree one was implemented , and it will be
described for a homogeneous system of equations.

Recall, the Full Approximation Scheme of degree one is given by,

uht = PH(uh) + vh � uh (5.13)

vht = PH(vh) + vh � uh

where PH may be either a linear or nonlinear operator and vh = uh+ � , with � corresponding to
the �rst correction term in the Correction Scheme form.

The algorithmic implementation is slightly more involved than the Correction Scheme as it
requires some modi�cation of the time marching procedure. Denote by eEH;K

1 the integration

scheme obtained by modifying the coarse grid operator EH;K to time advance the LDS system of
degree one (5.13).
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The algorithm has the following form

LDS Method of Degree one , Full Approximation Scheme

Initialize V 0
0;1

N = 0

While N � d T
K
e Do

Call Initialize(V N
0;1; V

N
1;1)

For i =1,. . .,Revisit Do

Solve V N+1
1 = eEH;K

1 V N
1 ,

Set N = N + 1

End

End

Here, V1 denotes the vector (V0;1; V1;1). For presentation simplicity, the initialization procedure
is described for the case H

h
= 2. Generalizations to the case H

h
= 2l are identical to those for the

Correction Scheme. In Section 5.1.2 it was shown (see Eq. (5.8){(5.7)), that after the Correction

Scheme initialization V 1
0;1 contains the �ne grid solution uh(x;�t) and V 1

1;1 contains �t �(x;�t).
Thus, the FAS initialization consists of the Correction Scheme initialization supplemented with

the additional computation of (uh + �)(x;�t) at the end of the procedure. For completeness, the
whole initialization procedure for the Full Approximation Scheme is listed below

Initialize(V N
0;1; V

N
1;1)

Set UN = Ih;k
H;K

V N
0;1

Solve UN+m
2 = Eh;k UN+m�1

2 , m=1,2eV N+1
0;1 = EH;K V N

0;1

Set eV N+1
1;1 = IH;K

h;k
UN+1 � eV N+1

0;1

V N+1
0;1 = eV N+1

0;1 + eV N+1
1;1 ,

V N+1
1;1 = V N+1

0;1 + 1
�t
eV N+1
1;1 ,

Set N = N + 1

The generalization to higher degree LDS is straightforward, instead of the original variables
(V0;d; V1;d; . . . ; Vd;d) a new set of variables (V0;d; V0;d+V1;d; . . . ; V0;d+ � � �+Vd;d) is introduced. The

equations satis�ed by these new variables can be determined from the equivalence between the
Full Approximation Scheme and the Correction Scheme for linear problems.

5.1.4 Treatment of Boundary conditions

The LDS treatment of the boundary conditions will be discussed under a restrictive commutativity

assumption, which at this stage we do not know how to dispose.
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Assume uh satis�es the boundary condition

Muh +Nuh = g (5.14)

If [M;N ] = 0, then � = Nuh satis�es,

M� = MN uh = N M uh = Ng � N2u (5:15)

If M� � � the right hand side term may be neglected and � satis�es the boundary condition

M� = 0 (5:16)

Otherwise, when higher degree LDS is employed, the �j satisfy the boundary conditions

M�1 + �2 = g1 (5.17)

...

M�k = 0 (5.18)

where

�j = N j� (5.19)

gj = N jg (5.20)

Thus, a large error at the boundary discretization may require adding correction terms and

corresponding equations in the whole domain.
The assignment of the appropriate boundary conditions to the correction terms when the

commutativity assumption does not hold should be further investigated.
The presence of non-periodic boundary conditions may pose problems even when the commu-

tativity assumption holds. This is due to errors introduced by the one-sided high order interpola-

tion near the boundaries. These large and localized errors excited during the initialization phase
might not be damped before the next visit to the �ne grid; resulting in an error which grows

exponentially in the number of visits to the �ne grid. At this stage of research, it seems that
one should use the di�erential equation to design appropriate near boundary interpolation with

reduced errors (see Sec. 7 for an example).

5.2 Richardson Extrapolation

The simultaneous time stepping on two grids during the initialization phase can be used to
estimate the local truncation error. This estimate can be used in various ways. In [1, 2, 3] it was

used to implement adaptive mesh re�nement for hyperbolic equations. In the multigrid method
this estimate is used for the � extrapolation technique which applies a weighted transfer of the

correction term to obtain higher accuracy using a lower order scheme [4] .
For simplicity, let Qh be a two-level explicit di�erence operator. If the solution is smooth

enough, the local truncation error is

u(x; t+ k)� Qhu(x; t) = k [kq1a(x; t) + hq2b(x; t)] + kO(kq1+1 + hq2+1) (5.21)

= � + kO(kq1+1 + hq2+1) (5.22)
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where the leading term is denoted by � . If u is smooth enough, then if one takes two time steps

with the method Qh, the leading error is 2� . That is,

u(x; t+ 2k)� Q2
hu(x; t) = 2� + kO(kq1+1 + hq2+1) (5:23)

Let Q2h be the same di�erence scheme as Qh but based on mesh width of 2h and 2k. Also, assume
that the order of accuracy in time and space are equal, q1 = q2 = q. Then

u(x; t+ 2k)�Q2hu(x; t) = (2k) [(2k)qa(x; t) + (2h)qb(x; t)] + O(hq+2) (5.24)

= 2q+1� +O(hq+2) (5.25)

Since u(x; t+ 2k)� Q2u(x; t) � 2� , forming the di�erence

Q2
hu(x; t)� Q2hu(x; t)

2q+1 � 2
= � + O(hq+2) (5:26)

gives an estimate of the local truncation error at time t. In other words, the di�erence between
the solution on grid (2h, 2k) and (h, k) uses to estimate of the local truncation error.

This procedure has several advantages. First, it is not necessary to know the exact form of

the truncation error to apply it. The error estimation procedure is independent of the di�erence
method. The restriction of this method, that the accuracy in time and space should be the same,

is not a severe one. Many popular �nite di�erence methods share this property, for example,
second order methods like Lax Wendro� or MacCormack's method and Leap Frog, and �rst order

method such as upstream di�erencing. For methods where the accuracy in space and time is not
the same, a more expensive variant of this procedure is possible. For example, one could estimate

the spatial and temporal error separately: �rst keep k constant and take a step based on 2h
di�erences, then keep h constant and take a step with time step 2k. Other variations are possible.

In the present work the LDS with Richardson extrapolation was employed only for schemes with
the same spatial and temporal accuracy. The usefulness of this approach applied to discretizations
without this property should be further investigated.

The initialization step of the LDS method computes the term Q2
hu� Q2hu and uses it as the

initial value of the correction equation on the next coarser grid. Taking

2q

2q � 1

�
Q2
hu� Q2hu

�
(5:27)

as the initial value will yield an O(hq+1) approximation on the coarse grid.

The initialization of the extrapolated LDS of degree one is performed directly from the �nest
grid. The extra cost associated with this initialization is compensated by the added accuracy.

Richardson extrapolation is based on Taylor expansion of the error and is valid only for smooth
data. For non-smooth solutions, this procedure is incorrect and might lead to an error that grows

exponentially with the number of visits to the �ne grid. Therefore, a great care should be taken
when considering this method, to ensure that the discretization is dissipative enough to prohibit
any undesired growth. Nevertheless, since the dissipative schemes employed by the LDS damp the

oscillatory components (see Sec. 6.2), this technique might give excellent results when properly
used (see Figure 12).
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5.3 Work Considerations

The amount of computational work and the memory requirement in a cycle of an LDS of degree m
will be evaluated and compared with the corresponding requisites on the �nest grid in the cycle.

The simultaneous time-stepping on the �ner grids during initialization constitutes a large
fraction of the algorithm computational cost and dominates its storage requirements. There is a

trade o� between the storage requirements and the e�ciency in the two initialization procedures
described in Section 5.1. In the present work the computationally e�cient simultaneous initial-

ization was employed since only moderate storage was needed. However, when storage is limited,
direct initialization might be favored. In this section, only the e�ciency of the simultaneous

scheme is analyzed, but the storage requirements are compared for both methods.
In order to simplify analysis, it will be assumed that the �nest and coarsest grid meshsizes

satisfy H = 2lh; and that a grid is re�ned by halving its meshsize.

The problem is solved in a d-dimensional space, for d = 2; 3. Typically, real world problems
occur in 3-dimensional space.

5.3.1 Storage Requirements

The LDS method of degree m employs on the coarsest level m + 1 times as many equations as

on the �nest grid; while on intermediate grids, twice the number of the �ne grid equations are
solved. The number of points in a spatial grid on any level is 2d larger than in the next coarser

one. In the simultaneous initialization, see Figure 3, if all grids are allocated simultaneously the
storage requirement is, 0

@1 + m+ 1

2dl
+

l�1X
j=1

1

2dj�1

1
AS (5:28)

where S is the storage required for the �nest grid. Noting that at all times merely two grids are

time advanced simultaneously, then a careful management of memory may reduce this requirement
to �

1 +
1

2d�1
+
m+ 1

2dl

�
S (5:29)

These two requisites are equivalent for l � 2 (i.e., for H
h
= 2; or 4) as is the case in the present

research. Therefore, this possible small reduction of memory usage will not be further elaborated.

If memory is at premium, storage may be traded for e�ciency by using direct initialization,
see Figure 2. This procedure employs only the �nest and coarsest grids with memory requirement
of

(1 +
m+ 1

2dl
)S (5:30)

It should be noted that typically l = 2, d � 2, and due to e�ciency considerations the degree

satis�es m � 3 (see Section 5.3.2); thus, the storage overhead associated with the LDS algorithm
is fairly small.

5.3.2 E�ciency

The computational cost of �ne grid time-stepping relative to the cost of obtaining the same

solution using the LDS algorithm will be evaluated. In this estimate, the cost of the intergrid
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transfers is neglected, as in many cases it is small relative a �ne grid time step. First, the work

associated with the initialization of an LDS of degree m is computed. De�ne

Il;m(d) =

(
The cost to initialize an LDS of degree m using the simultaneous

initialization when the spatial dimension is d and H = 2lh

)
(5:31)

An inspection of Figure 3 leads to the following formula for Il;m(d),

Il;m(d) = 2m+
m(m+ 1)

2dl+1
+ 3m

l�1X
k=1

1

2dk
(5:32)

During initialization a time equal to m 2l �ne grid time steps is marched. Denote by N the
number of coarse grid time steps performed before revisiting the �ne grid. The e�ciency of an

LDS cycle is de�ned as the computational cost of time-stepping on the �ne grid relative to the
work required to obtain the same solution on the coarse grid with an LDS cycle. It is given by
the formula,

(N +m)2l

Il;m(d) + N (m+ 1) 2�dl
(5:33)

The following table and �gure list the LDS e�ciency for H = 4h and d = 2; 3, for various values
of N .

Revisit E�ciency for 2D problems E�ciency for 3D problems

m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

5 6.98 4.23 3.24 9.42 5.56 4.25

10 10.83 6.35 4.67 16.28 9.11 6.63

15 13.15 8.00 5.82 22.38 12.36 8.83

20 15.81 9.32 6.75 27.85 15.35 10.86

25 17.52 10.41 7.53 32.80 18.09 12.75

Typically to multilevel methods, this algorithm e�ciency increases with the problem dimen-

sionality.

6 Fourier Analysis

Fourier analysis is a major tool for the analysis of numerical approximations to hyperbolic equa-
tions [17], as well as for analyzing multigrid algorithms [4]. In this section it is employed to obtain

necessary conditions for algorithm convergence.

6.1 Properties of the intergrid transfers

The transfer of the solution between the various grids plays a central role in the LDS algorithm.

In the initialization stage the solution is �rst interpolated to the �ner grids and after several time
steps on these grids is restricted back to the coarsest grid. For an LDS of higher degree, this pro-

cedure is repeated for the correction terms. Inevitably, this process introduces errors. Therefore,
an appropriate choice of these operators is essential to guarantee the algorithm performances and

the desired accuracy of the solution.
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Spatial dimension two
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Spatial dimension three
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Figure 4: LDS e�ciency for 2D and 3D problems when H = 4h. (a) LDS of degree one (b) LDS

of degree two (c) LDS of degree three.

The analysis will be �rst performed for �rst order operators. This is no limitation since every
problem may transformed to a �rst order system by introducing additional variables. Assume

that � = �t
�x

is �xed on all grids; thus, the temporal error can be expressed in terms of h =
�x. For simplicity, the analysis will be performed for one dimensional problems with H = 2h;

generalizations to higher dimensions is straightforward. Assume that the spatial discretization is
of order p. Furthermore, assume that the order of the spatial discretization coincides with the

order of the full discretization. Thus, for this analysis, the e�ect of the temporal error on the
accuracy may be ignored by investigating a semi-discrete system.

Let the IhH ; I
H
h be the interpolation and restriction operators, respectively; and let ÎhH(�); Î

H
h (�)

be their corresponding symbols. Assume that for smooth components the intergrid operators
satisfy,

ÎhH(�) = 1 + c �p1 +O(�p1+1) (6.1)

ÎHh (�) = 1 + c �p2 +O(�p2+1)

where throughout this section c is a generic constant. For the harmonic oscillatory component
�0 = � + � holds,

ÎhH(�
0) = c �q1 + O(�q1+1) (6.2)

ÎHh (�0) = c �q2 + O(�q2+1)

Denote by Î(�) = ÎHh (�)ÎhH(�). Then under the previous assumptions, for smooth components

Î(�) � (1 + c �p1)(1 + c �p2) = 1 + c (�p1 + �p2) + h.o.t (6:3)
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For the harmonic oscillatory components holds,

Î(�0) = c �q1+q2 + h.o.t (6:4)

Let L̂h(�) denote the symbol of Lh. For LDS of �rst degree one wants to compute,

�̂(�;�t) =
h
eL̂

h(�)�t � eL̂
H(2�)�t

i
û0(�) (6:5)

Instead one computes,h
Î(�)eL̂

h(�)�t + Î(�0)eL̂
h(�0)�t � eL̂

H(2�)�t
i
û0(�) = �̂(�;�t) +

h
c (�p1 + �p2)eL̂

h(�)�t

+ c �q1+q2eL̂
h(�0)�t

i
û0(�) + h.o.t (6.6)

For the low frequencies, if L is the �rst derivative,

L̂h(�) = i
�

h
+ chp

�
�

h

�p+1

+ h.o.t (6:7)

For the high frequencies, ���L̂h(�)��� = O

�
1

h

�
(6:8)

Thus, for this operator,

�̂(�;�t) = c �p+1�t

h
û0(�) + h.o.t (6:9)

In order to obtain the desired accuracy, the following inequalities should hold

�p1 < �p+1�t

h
(6.10)

�p2 < �p+1�t

h
(6.11)

�q1+q2 < �p+1�t

h
(6.12)

In general, for �rst order hyperbolic equations, �t
h
= O(1), thus this term may be neglected and

one obtains conditions on the order of the intergrid transfers required to guarantee the algorithm

performances

p+ 2 � p1; p2 (6.13)

p+ 2 � q1 + q2

It follows from the above bounds that if �t
h
! 0, increasingly higher order interpolations

will be necessary. Hence, decreasing the time step on a �xed spatial grid will have undesired
consequences. In practice, one tries to use a time step as large as possible, thus, this observation

poses no real restrictions.
If L is an operator of order m, the previous argument implies that,

�̂(�;�t) = c �p+m
�t

hm
û0(�) + h.o.t (6:14)
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Therefore, in order to obtain the desired accuracy, the following inequality should hold

�p1 < �p+m
�t

hm
(6.15)

and similar inequalities should hold for p2; (q1 + q2). This implies the following conditions,

p+m+ 1 � p1; p2 (6.16)

p+m+ 1 � q1 + q2

provided �t
hm

= O(1), i.e., it is bounded away from zero.
For an LDS of degree two, ' is initialized to correct � in the same way that � is initialized to

correct u
LDS

. Hence, these conditions are su�cient for LDS of degree two, as well. It follows that
these conditions are su�cient for an LDS of a general degree m.

These orders of the intergrid transfer are necessary to maintain the scheme accuracy. In prac-
tice, one might prefer to employ transfers of order higher than the minimum necessary. Consider,
for example, a dissipative scheme which strongly damps the oscillatory components. Thus, each

visit to the �ne grid somewhat damps the smoother components of the solution through the inter-
polation error which transfers some of their energy to the �ne grid oscillatory components. High

order interpolations transfer less energy to these components and therefore might be preferable
in such circumstances.

Another undesired property of the intergrid transfer is captured in the following lemma.
Lemma 2: For an LDS algorithm, if Î(�)+ Î(�0) = �, with � 6= 1, then initialization procedure

introduces an O(1) error in the Fourier component �.

Proof : By the assumption, instead of �̂(�;�t) in Eq (6.9) one computesh
Î(�)eL̂

h(�)�t +
�
� � Î(�)

�
eL̂

h(�0)�t � eL̂
H(2�)�t

i
û0(�) = �̂(�;�t) +

h
c (�p1 + �p2)eL̂

h(�)�t

+ (�� 1� c �p1 � c �p2)eL̂
h(�0)�t

i
û0(�) + h.o.t (6.17)

The staggered grid transfers, often, satisfy the condition of Lemma 2 for the oscillatory com-
ponents. However, since the LDS discretizations are, usually, dissipative (see Sec. 6.2), this result

has little practical consequences.

6.2 The Symbol of the LDS cycle

The LDS method employs several operators which should be simultaneously analyzed in order to

ensure the proper performance of the algorithm. In the sequel, Fourier analysis will be used to
analyze the cycle of an LDS of degree one for constant coe�cient equations in one dimensional

space with periodic boundary conditions when H = 2 h.
Let Eh; EH, be the time marching operators on the �ne and coarse grids, respectively. Denote

the intergrid transfers by IHh ; I
h
H . The correction term � is initialized by,

�1 =
�
IHh E2

h I
h
H �EH

�
u0H (6:18)

The solution of the LDS of degree one algorithm, for n � 1, is given by,

unLDS = En
Hu

0
H + (n� 1)En�1

H �1 (6.19)

=
�
EH + (n� 1)(IHh E

2
hI

h
H �EH)

�
un�1H (6.20)
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Let bEh; bEH ; Î
H
h ; Î

h
H denote the symbols of the respective operators. Let G(�; �) denote the am-

pli�cation factor of the Fourier component � in a cycle consisting of � consecutive steps on the

coarse grid before revisiting the �ne grid. It is given by

G(�; �) = k
n bEH(2�) + �

h
ÎHh (�) bE2

h(�)Î
h
H(�) + ÎHh (�0) bE2

h(�
0)ÎhH(�

0)� bEH(2�)
io bE�

H(2�)k

The ampli�cation factor of any Fourier component should approximate as closely as possible the

analytic growth rate of that component. In particular, when the analytic solution does not grow
in time, one would like to guarantee that no Fourier component is ampli�ed by the LDS cycle,

i.e., that the ampli�cation factor of the cycle A(�) satis�es,

A(�) = max
�2[��;�]

G(�; �) � 1 (6.21)

Moreover, it would be desirable if the LDS cycle was time-stable for any underlying discretization
with this property.

For scalar equations, it can be easily seen that, if j bEH(2�0)j = 1, and

�̂1(2�0) =
h
ÎHh (�0) bE2

h(�0) Î
h
H(�0) + ÎHh (�00)

bE2
h(�

0
0) Î

h
H(�

0
0)�

bEH(2�0)
i
û0(2�0) 6= 0

then
lim
�!1

G(�0; �) =1 (6:22)

This is in accordance with the polynomial error bounds derived in Section 3. It should be noted
that although the bounds were polynomial, whenever condition (6.21) does not hold, the algorithm

exhibits a growth exponential in the number of visits to the �ne grid. Thus, the time-stability
of the underlying discretization does not necessarily imply time-stability of the LDS scheme.

Moreover, if this condition is violated for all � < �0, (e.g., when the discretization is not dissipative
enough), then for revisiting index � < �0 the more frequently the �ne grid is visited the faster the

solution blows up.
Dissipation induces an exponential decay of the solution. Therefore, a dissipative scheme will

eventually suppress any polynomial growth of the solution, i.e., for such discretizations A(�) < 1
for large enough �. However, since the LDS algorithm should maintain the �ne grid accuracy,

that grid has to be visited su�ciently often. Therefore, the discretization should have enough
dissipation to guarantee that condition (6.21) holds for a schedule � prescribed by the accuracy
requirement. Quite often, arti�cial dissipation should be added to the coarse grid discretization to

ensure the cycle is time-stable. This dissipation may be added either during the time marching on
the coarse grid, or during the initialization stage as well, in which case it should also be introduced

to the �ne grid scheme.
The additional dissipation typically results in a dissipative cycle. This might limit the method

applicability for truly long integration times. Hence, one should add just enough dissipation to
ensure that no Fourier component is ampli�ed by the cycle. This, of course, does not imply that no

wavenumber may grow during the cycle; to the contrary, imposing such a restrictive requirement
leads to a dissipative cycle of limited practical interest.

In general, the length of the cycle � and the amount of arti�cial dissipation should be deter-
mined simultaneously to achieve the �ne grid accuracy.
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6.3 Staggered vs Non-staggered grids

Time dependent problems are often discretized and solved on staggered grids. The dispersion
error of discretizations on such grids is, typically, signi�cantly smaller than the error in schemes

of the same order on a non-staggered grid. Hence, one can accurately solve on staggered grids
for substantially longer integration times. In the sequel the bene�ts and disadvantages of using

such grids when employing the LDS method will be briey discussed. The exposition is rather
general and is demonstrated through a particular example of the linearized Euler equation, which

has been investigated in the present research.
A non-staggered Cartesian grid consists of a set of discrete variables de�ned at its vertices and

the system of equations is discretized at these points. In contrast, on a staggered grid the various
variables are located at di�erent positions in the computational cell and the various equations
are evaluated at distinct points of the cell. Figure 5 depicts the variables distribution and the

corresponding computational cells for the linearized Euler equation,

ut = a � ru+ c px

vt = a � rv + c py (6.23)

pt = a � rp+ c (ux + vy)

where a = (a1; a2) is a two dimensional vector. The superiority of staggered grid discretizations
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Figure 5: Staggered grid discretization of the linearized Euler equation

to those on non-staggered grid stems from the fact that the symbol of a general order mid-

cell discretization of the �rst derivative has the form
Pm

k=0 2 i �k
sin(k+ 1

2
)�

h
(where �k depends

on the scheme coe�cients), while the symbol of a central discretization of this derivative on
a regular grid is

Pn
k=1 i�k

sink�
h

(�k are scheme dependent). The later symbol vanishes at �;

hence, poorly approximates the continuous symbol i�. The phase error of a non-staggered central
discretization is larger than that of a mid-cell discretization of the same order over a major

fraction of the spectrum of wavelength representable on the grid. Moreover, in non-dissipative
full discretizations based on central spatial discretizations the Fourier components in the upper

half of the spectrum have negative group velocity and move in a direction opposite to the physical
waves. These components can be spuriously excited by discrete boundary conditions or mesh

re�nements [15, 17]. Therefore, they might deteriorate the computation accuracy even when
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Figure 6: Re�nement of a staggered grid discretization of the linearized Euler equation with zero
Dirichlet boundary condition in the y direction.

they do not occur in the physical problem. In contrast, in mid-cell discretizations all Fourier
components have positive group velocity. A considerable drawback of the staggered grid stems

from the variables placement at di�erent positions in the computational cell which does not allow
implementation of characteristic boundary conditions.

The small phase error of staggered grid discretizations and consequently the signi�cantly less
arti�cial dissipation required to suppress the polynomial growth of the LDS error give rise to
highly e�cient algorithms applicable for very long integration time. The e�ciency obtained by

the LDS algorithm for the linear acoustics equation solved on staggered grid was 25 in 2D and 66
in 3D, (see Figures 15 and 16).

The staggered grid has two drawbacks associated with the LDS implementation. Both of them
occur in the model problem investigated here and are associated with the intergrid transfers. The

�rst, is that the intergrid transfers satisfy the condition of Lemma 2. Therefore, for some high
frequencies there is a O(1) error and enough dissipation should exist to eliminate this error. The

second problem is that the solution interpolation to the �ne grid requires extrapolation in the
cells nearest to the boundary (see Figure 6). This extrapolation strongly ampli�es the oscillatory

components in the solution and a way had to be found to circumvent this e�ect for our model
problem. Despite these de�ciencies, for the problems investigated in this work the staggered grid
supports substantially better results than the regular grid.

7 Numerical Results

The LDS method was introduced in the previous sections and its properties were analyzed. The

numerical examples presented in this section aim at demonstrating the method strength, as well
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as supporting the claims and analysis performed in previous sections.

All the examples in this work have spatial dimension two. However, generalization to higher
dimensional problems is straightforward and was avoided due to the heavy computational cost of
such simulations.

In all examples H
h
= 4 with H = 1

32
and h = 1

128
; in Example 6 �ner grids were used as well.

The notation LDS(d = a;  = b) used in this section denotes an LDS algorithm of degree a

which revisits the �ne grid after performing b time steps on the coarse grid with the LDS system.
In all relevant plots, the error is normalized with respect to the solution norm, e.g, the coarse

grid error is normalized by kIHU�uHk

kIhUk
, where IHU denotes a restriction of the exact solution to

the coarse grid. Similarly, the relative error which measures the error in an approximation to the

�ne grid solution is normalized by the latter solution norm; e.g., the coarse grid relative error is

normalized by kuh�uHk

kuhk
, where uh stands for a restriction of the �ne grid solution to the coarse

grid.

7.1 The Advection Equation

The �rst set of examples consists of solving the advection equation on the domain [0; 1]� [0; 1]

with periodic boundary conditions. The equation is given by,

ut � a(x; y) ux� b(x; y) uy = 0 (7:1)

In case a(x; y); b(x; y) are constant, an explicit solution of this equation with initial data

u(x; y; 0) = u0(x; y) (7:2)

is given by
u(x; y; t) = u0(x+ at; y + bt) (7:3)

Two instances of this equation are solved, the constant coe�cient equation with,

a(x; y) = 1 (7.4)

b(x; y) = 0:3 (7.5)

and the variable coe�cient equation with,

a(x; y) = 1 + 0:3 sin 2�x (7.6)

b(x; y) = 0:3 (1+ 0:4 sin 2�y) (7.7)

In this set of examples, except Example 6, the spatial discretization was second order upwind and

integration was performed by third order Runge-Kutta. In all these examples k
h
= K

H
= 0:3.

In this set of examples the solution was restricted to the coarse grids by injection, and unless

otherwise speci�ed, quintic interpolation was employed.

Example 1. The LDS yields the �ne grid solution. Throughout this work, it was claimed
that the LDS method yields the �ne grid solution on the coarse grid. Clearly, these solutions may

not be identical; rather, one would like to ensure that the error norm in the LDS solution relative
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to the �ne grid solution is similar to the error norm in the �ne grid solution relative to the exact

solution, that is,
kIHh u

h � u
LDS

k

kIHh u
hk

�
kIhU � uhk

kIhUk
(7:8)

where IhU denotes a restriction of the analytic solution to the �ne grid. Figure 7 demonstrates

that the LDS yields the �ne grid solution in the sense de�ned by (7.8).

Example 2. The LDS e�ective integration time. Figure 8 shows two examples of the LDS
applied to the variable coe�cient advection equation, for smooth and oscillatory data. It can be

readily seen that the e�ective integration time the discretization can be used (i.e., the integration
time when the error is small) drastically decreases for oscillatory data. This �gure should be born

in mind as a reference, since in some of the next examples the same equation with these initial
data are used for integration times signi�cantly longer than the LDS e�ectiveness time, in order

to emphasize di�erence between solutions for various parameters.

Example 3. Direct and simultaneous initialization are practically indistinguishable.

In Section 5.1.1 two initialization procedures for the correction terms were presented. These

methods vary in their computational cost and memory requirements. Figure 9 compares the
direct and simultaneous initialization procedures. It can be seen that at a time longer than

the algorithm e�ectiveness time, the LDS solutions are hardly distinguishable and the observable
di�erence between these solutions is signi�cantly smaller than the error in the LDS approximation
relative to the �ne grid solution. Thus, it may be concluded that these procedures have essentially

the same accuracy.

Example 4. The necessary and desirable orders of the intergrid transfers. In Sec-
tion 6.1 the orders of the intergrid transfers required to ensure the algorithm performances were

analyzed. This analysis implies that for a second order scheme the interpolation should be at
least cubic for an LDS of general degree d. The injection introduces no error to the high fre-

quencies, thus is of in�nite order. Figure 10 displays an LDS of degree one and two (on the left
and right, respectively) with linear, cubic and quintic interpolations. It can be seen, for both

approximations, that linear interpolation results in an approximation worse than the coarse grid
solution. Cubic interpolation is su�cient to guarantee the LDS performances, however, quintic

interpolation yields signi�cantly better results. This phenomena might be due to the interpolation
that transfers some of the smooth components energy to the �ne grid high frequencies which are
strongly damped on the �ne grid. This interpolation error is larger for the cubic interpolation.

Example 5. The e�ciency of the LDS of various degrees. An LDS approximation of
higher degree provides a better approximation to the �ne grid solution than a low degree one.
Hence, it may be used for longer integration time before the �ne grid should be revisited. On the

other hand, for such a scheme the initialization procedure as well as the coarse grid time-stepping
are more costly.

Figure 11 addresses the question which approximation is more cost e�ective, a low or a high de-
gree one. In this �gure LDS algorithms of various degrees with the same e�ciencies are compared

for both smooth and nonsmooth data and for diverse costs. The e�ciency of LDS(d = 1;  = 8),
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LDS(d = 2;  = 20) and LDS(d = 3;  = 41) is 9.4; while that of LDS(d = 1;  = 20) and

LDS(d = 2;  = 79) is 15.8. In order for an LDS of degree three to achieve e�ciency of 15 the
�ne grid should be visited once in 470 coarse grid steps, while an e�ciency of 15.8 can not be
achieved even if the �ne grid is visited once in 1000 time steps. This suggests that high e�ciency

can not be achieved with high degree LDS. The e�ciency of LDS(d = 3;  = 350) is only 14.6.
For short integration times this e�ciency can not be achieved with LDS of degree three since not

enough time steps are marched during the simulation, e.g., see Figure 11 left.
Figure 11 plots the error in various solutions relative to the �ne grid solution. Inspection of

Figure 11 reveals that for small relative error, e.g. � 0:02 (i.e., T � 1 for the smooth data example
and T � 0:3 for the oscillatory data), then for smooth data the LDS of degree one provides a better

approximation for both the low and high e�ciency scheduling used. For more oscillatory data,
the degree two LDS yields better results for the same e�ciency. This might be explained by the

fact that LDS of degree one provides a fairly good approximation for the smoother components,
but not for the more oscillatory ones. The LDS of degree three does not seem an appropriate
alternative to the lower degree approximations.

It should be noted that in 3D problems, the performance of LDS of degree two signi�cantly
improves. Thus, the e�ciency of the abovementioned scheduling is : for LDS(d = 1;  = 8) it

is 13.63 , for LDS(d = 2;  = 20) it is 15.34 and for LDS(d = 3;  = 41) it is 18. Moreover, for
LDS(d = 1;  = 20) it is 27.9, and for LDS(d = 2;  = 79) it is 38.11. Thus, although in 2D

problems there seems to be little advantage to use second degree LDS rather than �rst; in 3D,
this changes drastically. If these schedules yield similar results for a similar equation in 3D, then

the LDS of degree two is more cost e�ective for these problems than the �rst degree algorithm.
It should be born in mind, that the performances of LDS of various degrees might change de-

pending on the equations or on the data. Therefore, it is hard to give conclusive recommendations
which method to prefer; and each problem should be investigated separately.

Example 6. Richardson Extrapolation. In Section 5.2 the LDS method with Richardson

extrapolation was introduced. Although this technique is limited in scope and, hence, should
be used with great care; it might be highly bene�cial when it is applicable. Figure 12, provides
an example when this idea works. It consists of solutions of the constant coe�cient advection

equation discretized with �rst order upwind forward Euler method, which is �rst order in time
and space. The equation is solved on �ne grids of 128 and 256 points and corresponding coarse

grids of 32 and 64 points on which the LDS is solved. In this example the normalized errors are
computed with respect to the exact solution. For smooth data, mesh re�nement of the �nest grid

by a factor of two yields a decrease in error by a factor of 1.875 for the �rst order scheme versus a
factor of 5.81 for the LDS with Richardson extrapolation. For nonsmooth data the �ne grid error

is reduced by a factor of 1.71 while for the extrapolated LDS the factor is 4.03. Thus, the error
reduction for the extrapolated LDS is second order both for smooth and oscillatory data.

7.2 The Linearized Euler Equation

The next set of examples involves solution of the linearized Euler equation, given by

pt = a(x; y) px+ b(x; y) py + c(x; y) (ux+ vy)

ut = a(x; y) ux+ b(x; y) uy + c(x; y) px (7.9)
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vt = a(x; y) vx+ b(x; y) vy + c(x; y) py

This system was solved for various settings. In all of them interpolation and restriction were of
sixth order.

Example 7. Staggered vs. non-staggered grid. Figure 13 demonstrates the superiority of

the staggered grid discretization over the regular one for the single grid solution and consequently
for the LDS approximation. It shows solutions of the variable coe�cient linearized Euler equation

on [0; 1] � [0; 1] domain with periodic boundary conditions. The discretization is second order
upwind for the advection terms and second order central for the terms involving c(x; y); the

integration was performed with third order Runge-Kutta with �t
�x

= 0:3. In the �ne non-staggered
grid solution one can see an oscillatory component which dominates the solution. This component

is visible due to a large phase error of the nonsmooth wavelengths on this grid. The error in
these components is even more visible in the coarse grid and LDS solutions. Clearly, the LDS

is ine�ective for this integration time. However, since the error in the non-staggered �ne grid
solution is already very large, this is not a real drawback. The large dispersive error is also
the cause for the little resemblance between the staggered and non-staggered solutions for the

same data and integration time. In contrast, all the staggered grid solutions do not have those
oscillations, and the LDS provides an excellent approximation to the �ne grid solution.

Example 8. The e�ect of diminishing CFL. In Section 6.1, it was pointed out that when
�t
�x

! 0, the order of interpolation should increase. Figure 14 demonstrates this phenomenon
for the constant coe�cient linearized Euler equation on [0; 1] � [0; 1] with periodic boundary

conditions. Discretization on a staggered grid is second order upwind for the advection term and
second order central for the terms involving the c factor. Integration was done by low storage

third order Runge-Kutta. It can be seen that for very short integration time an oscillatory error
prevails when �t

�x
= 0:01. Increasing by a factor of 10 the CFL as well as the integration time,

eliminates these oscillations, yielding an excellent approximation to the �ne grid solution.

Example 9. High e�ciency LDS on periodic staggered grid. The example in Figure 15,

is a solution of the constant coe�cients acoustics equation,

pt = ux + vy

ut = px (7.10)

vt = py

on the domain [0; 1]� [0; 1] with periodic boundary conditions discretized on a staggered grid with

the same discretization as in the previous example, with �t
�x

= 0:3.
This discretization has only little dissipation through the Runge-Kutta scheme. However,

since the mid-cell discretization provides an very good approximation to the di�erential operator,
the coarse grid operator well approximates the �ne grid operator. Hence, only a little arti�cial

dissipation should be added. Sixth order arti�cial dissipation was added to all equations of the
form �h�3, with � = 0:005. The small dispersive error of the mid-cell discretization enabled both

very long integration time, as well as very high LDS e�ciency of 26 in 2D and 66 in 3D. Note
that at this stage the LDS error relative to the �ne grid is forty times smaller than the relative

error of the coarse grid.
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Example 10. High e�ciency LDS on non-periodic staggered grid. Figure 16 plots the

solution of the acoustics equation on [0; 1] � [0; 1] with periodic boundary conditions in the x

direction for all variables and zero Dirichlet boundary conditions in the y direction for v,

V (x; 0; t) = V (x; 1; t) = 0 (7:11)

except for this di�erence, all the other parameters are identical to those in the previous example.
Recall that high order one sided interpolation near the boundary strongly ampli�es the oscil-

latory components. This problem had to be circumvented in this equation for the interpolation in
the y direction. The observation that led to a resolution of this di�culty is that for this equation
and these boundary conditions p; u are symmetric in the y direction, and v is asymmetric in this

direction. These properties were exploited in the design of the intergrid transfers as well as in the
introduction of the high order arti�cial dissipation. The p; u variables were symmetricly extended

around the boundary in the y direction and the interpolation and dissipation were calculated for
the extended solution. An assymetric extension for the v variable was similarly de�ned and used.

The assymetry v is follows from the dual initial data argument, which asserts that the boundary
condition (7.11) may be viewed as requiring that a dual solution with the same magnitude but

opposite sign will constantly hit the boundary from the exterior of the domain (e.g., see [16]).
The symmetry of p in the y direction follows from

pyt(x; 0; t) = vtt(x; 0; t) = 0 (7:12)

Thus, if initially
py(x; 0; 0) = 0 (7:13)

this symmetry is maintained for later time. A similar argument holds for the boundary condition
at y = 1. For the u variable,

uyt(x; 0; t) = uty(x; 0; t) = pxy(x; 0; t) = pyx(x; 0; t) = vtx(x; 0; t) = 0 (7:14)

Again, if the initial solution was symmetric in this direction, symmetry is preserved. These
assumptions hold for the initial data taken in our examples.

It can be seen that the e�ciency and accuracy of the LDS algorithm were not a�ected by the
imposition of non-periodic boundary conditions.

Example 11. The e�ect of low order arti�cial dissipation. The parameters taken in

the example in Figure 17 are identical to those in Figure 15 except for the use of lower (fourth)
order of dissipation of the form �h�2, with � = 0:02. This choice of � yields the same damping

of the oscillatory components as the sixth order dissipation used in Example 9. The resulting
LDS solution does not provide a satisfactory approximation to the �ne grid solution even for

integration time signi�cantly shorter than the one used in Example 9 and more frequent visits
to the �ne grid. It can be concluded that higher order dissipation is indeed essential for the

algorithm performances, as lower order dissipation damps too strongly the smooth components.

7.3 The nonlinear Euler equation

Example 12. The LDS method for the nonlinear Euler equation In Figure 18, the

nonlinear Euler equation is solved on [0; 1] � [0; 1] domain with periodic boundary conditions.
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This system is given by,

�t + � (ux + vy) + u �x + v �y = 0

ut + (u ux + v uy) +
c2

�
�x = 0 (7.15)

vt + (u vx + v vy) +
c2

�
�y = 0

where p = � , c2 = ��1 and  = 1:4. Second order central discretization was used for all terms,
with third order low storage Runge-Kutta ( �t

�x
= 0:3). Arti�cial sixth order dissipation was added

with � = 0:8. The interpolation and restriction were of sixth order accuracy.
The LDS e�ciency in this example is 17.5 for 2D problems and 32.8 for 3D problems.

8 Conclusions

The Large Discretization Step methods for time dependent problems were presented. First, the
LDS approximation was de�ned. It consists of a system of lower accuracy discretizations ap-

proximating a more accurate time dependent discrete operator. Error bounds on this type of
approximations to linear problems were obtained for the semi-discrete and fully discrete cases.

These estimates hold for both hyperbolic and parabolic equations. The research reported herein
aimed at deriving e�cient algorithmic implementation of the LDS approximation for hyperbolic

equations, a type of equations which were not previously amenable to multigrid methods. A
heuristic argument motivated the design of the LDS algorithm for nonlinear problems, as well.

The LDS methods enables to obtain the �ne grid accuracy on a coarse grid by adding correction

terms to the coarse grid equations, initializing them using the �ne grid and solving a system of
equations for these terms. The accuracy of the correction terms deteriorates at a rate determined

by the coarse grid discretization. However, since their norm is signi�cantly smaller than the
solution norm, they may be e�ectively used for many coarse grid time steps. Thereafter, the �ne

grid should be revisited to compute new initial data for them. Fourier analysis was employed to
analyzed di�erent aspects of the algorithm; in particular, to obtain conditions on the necessary

orders of the intergrid transfers.
The resulting algorithm has a typical e�ciency of 16 for 2D problems and 28 for 3D equations.

This e�ciency was achieved for linear problems with periodic and Dirichlet boundary conditions
and the for the nonlinear Euler equation with periodic boundary conditions. A particularly good
discretization of a linear equation yielded e�ciency of 25 in 2D and 66 in 3D problem.

The results presented in this work are very promising as for the potential of the proposed
approach to tackle even more complex problems. Still, a lot of research should be carried out

to better understand the method abilities and limitations. Several aspects of the LDS algorithm
should be further investigated. The frequency the �ne grid is visited is important both to the

algorithm e�ciency and to ensure the accuracy of the resulting solution. It would be highly ben-
e�cial if there was a systematic, preferably adaptive, way to determine when the �ne grid should

be visited. The dissipativity of the LDS cycle is essential to damp the polynomially growing error.
For dissipative discretizations, this requirement typically does not pose any problems. Quite of-

ten, though, some arti�cial dissipation should be added to guarantee the algorithm performances.
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A general way is required to determine the right amount of arti�cial dissipation which will sup-

press the error growth without a�ecting the algorithm accuracy. Boundary conditions treatment
within the LDS does not seem to pose particular problems. Nevertheless, a large variety of such
conditions should be implemented and tested. In particular, a general approach should be found

to reduce the high interpolation error near the boundaries.
The novel character of these methods opens many research directions. The application of the

LDS to systems of conservations laws and shocks calculations should be investigated. Another
interesting direction is to investigate possible generalizations of this method. In the present

research, one solves for the correction terms of a linear problem the same equation as the solution.
This approximation does not always yield the desired results, e.g., consider the discretization of

the wave equation discussed in Section 3. In a more general setting, there might be several
correction terms each satisfying a di�erent equation. Such a generalization might signi�cantly

reduce the simplicity of the present approach; however, it could be applicable to a broader class
of equations.

It is expected that the incorporation of the LDS ideas into parabolic solvers would signi�cantly

improve their performances, as well. This is another promising research direction.
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Figure 7: The advection equation, ut + ux + 0:3 uy = 0, with initial data u0 = e�20(x
2+y2).

Left : (a) �ne grid solution (b) the LDS(d = 1;  = 20) solution (c) coarse grid solution.
Right : Relative errors. (a) kIhu� uhk=kIhuk, (b) kuh � uHLDSk=ku

hk, (c) kuh � uHk=kuhk.
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Figure 8: Solutions of ut+ (1+ 0:3 sin(2�x))ux+ 0:3 (1+ 0:4 cos(2�y))uy = 0. Left : Initial data

is u0 = e�20(x
2+y2). Right : Initial data is u0 = e�50(x

2+y2). In both �gures : (a) the �ne grid

solution (b) the LDS(d = 1;  = 20) solution (c) the coarse grid solution.

43



T = 3.2

0.0 0.2 0.4 0.6 0.8
X

0.0

0.2

0.4

0.6

0.8

U

a
b
c
d

T = 3.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.1

0.2

0.3

R
el

at
iv

e 
E

rr
or

b
c
d

Figure 9: The advection equation, ut + (1 + 0:3 sin(2�x))ux + 0:3 (1 + 0:4 cos(2�y))uy = 0, with

u0 = e�20(x
2+y2). Left : (a) the �ne grid solution (b) the LDS(d = 2;  = 20) solution when

employing direct initialization. (c) the coarse grid solution (d) the LDS(d = 2;  = 20) solution
when employing simultaneous initialization. Right : Relative errors. (b) relative error of the

LDS(d = 2;  = 20) solution when employing direct initialization. (c) relative error of the coarse
grid solution (d) relative error of the LDS(d = 2;  = 20) solution when employing simultaneous

initialization.
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Figure 10: Solution of ut+(1+0:3 sin(2�x))ux+0:3 (1+0:4 cos(2�y))uy = 0, with u0 = e�20(x
2+y2).

Left : (a) the �ne grid solution (b) the LDS(d = 1;  = 20) solution when using quintic interpola-

tion (c) coarse grid solution (d) the LDS(d = 1;  = 20) solution when using cubic interpolation
(e) the LDS(d = 1;  = 20) solution when using linear interpolation. Right : (a) the �ne grid solu-

tion (b) the LDS(d = 2;  = 20) solution when using quintic interpolation (c) coarse grid solution
(d) the LDS(d = 2;  = 20) solution when using cubic interpolation (e) the LDS(d = 2;  = 20)
solution when using linear interpolation.
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Figure 11: Relative error in the solution of ut+(1+0:3 sin(2�x))ux+0:3 (1+0:4 cos(2�y))uy = 0,

with Left: Initial data is u0 = e�20(x
2+y2). Right : Initial data is u0 = e�50(x

2+y2). In both
�gures : (a) the LDS(d = 1;  = 8) solution (b) the LDS(d = 2;  = 20) solution (c) the

LDS(d = 3;  = 41) solution (d) the LDS(d = 1;  = 20) solution (e) the LDS(d = 2;  = 79)
solution (f) the LDS(d = 3;  = 350) solution.
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Figure 12: Errors in solutions of ut + ux + 0:3 uy = 0. Left : Initial data is u0 = e�25(x
2+y2).

Right : Initial data is u0 = e�60(x
2+y2). In both �gures : (a) error in solution on a 128 � 128

points grid. (b) error in LDS(d = 1;  = 20) solution on a 32� 32 points grid with Richardson
extrapolation. (c) error in solution on a 256� 256 points grid. (d) error in LDS(d = 1;  = 20)

solution on a 64� 64 points grid with Richardson extrapolation.
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Figure 13: Solution of the variable coe�cient linearized Euler equation, with coe�cients :

a(x; y) = 0:6 (1 + 0:2 cos2�x), b(x; y) = 0:4 (1 + 0:4 cos2�y), c(x; y) = 1 + 0:3 sin 2�x. Ini-
tial data is p0 = e�30(x

2+y2), u0 = 0, v0 = 0. Left : non-staggered grid. Right : staggered grid.
In both �gures : (a) the �ne grid solution (b) the LDS(d = 1;  = 20) solution (c) the coarse grid

solution.
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Figure 14: Solution of the constant coe�cients linearized Euler equation, with coe�cients :

a = 0:4;b = 0.5, c = 1: Initial data is p0 = e�45(x
2+y2), u0 = 0, v0 = 0. Left : �t

�x
= 0:01.

Right : �t
�x

= 0:1. In both �gures : (a) the �ne grid solution (b) the LDS(d = 1;  = 20) solution

(c) the coarse grid solution.
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Figure 15: The acoustics equation on periodic domain, with initial data p0 = e�35(x
2+y2), u0 = 0,

v0 = 0. In the plots of the solutions : (a) the �ne grid solution (b) the LDS(d = 1;  = 80) solution

when adding sixth order dissipation (c) the coarse grid solution. In the plot of the relative error :
(b) the relative error in the LDS(d = 1;  = 80) solution (c) the relative error in the coarse grid

solution.
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Figure 16: Solution of the acoustics equation with p0 = e�35(x
2+y2) , u0 = 0, v0 = 0 on non-

periodic domain. (a) the �ne grid solution (b) the LDS(d = 1;  = 80) solution when adding sixth
order dissipation (c) the coarse grid solution.
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Figure 17: Solution of the acoustics equation on periodic domain with initial data p0 = e�35(x
2+y2),

u0 = 0, v0 = 0. (a) the �ne grid solution (b) the LDS(d = 1;  = 20) solution when adding fourth

order dissipation (c) the coarse grid solution.
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Figure 18: Solution of the nonlinear Euler equation on a periodic domain, with initial data

p0 = 1 + 0:05e�50(x
2+y2), u0 = 0:2, v0 = 0. (a) the �ne grid solution (b) the LDS(d = 1;  = 25)

solution when adding sixth order dissipation (c) the coarse grid solution.
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